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Abstract

Most graphs are knotted

Abstract: We present four models for a random graph and show
that, in each case, the probability that a graph is intrinsically
knotted goes to one as the number of vertices increases. We also
argue that, for n ≥ 18, most graphs of order n are intrinsically
knotted and, for n ≥ 2m + 9, most of order n are not m-apex.
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Intrinsically knotted graphs

A graph is called intrinsically knotted (IK) if every tame
embedding in R3 contains a knotted cycle.

Let K7 denote the complete graph on 7 vertices.

Theorem -2 (Conway & Gordon, 1983)

K7 is intrinsically knotted.
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Are random graphs knotted?

Q: Are random graphs intrinsically knotted?

Q. What’s a random graph?

Here are four models.
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Four models of a Random Graph

Let N =
(n
2

)
denote the number of edges in Kn.

1. (Erdös-Rényi, 1959) Choose a graph G (n,M) uniformly at
random from the set of labelled graphs with |V | = n and |E | = M.

2. (Gilbert, 1959) For each of the possible N edges, we select it as
an edge of the graph G (n, p) with probability p > 0.

2.5 Use p = 1/2 in Gilbert’s model. Then every one of the 2N

labelled graphs on n vertices is equally likely.

3. (Unlabelled version of 2.5) Let Γn denote the number of
unlabelled graphs on n vertices. Choose a graph from this set
uniformly at random.
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Are random graphs knotted?

Q: Are random graphs intrinsically knotted?

A1. In model 2.5 and 3, there’s a constant nIK such that, when
n ≥ nIK , most (at least half) graphs with n vertices are IK.

A2. In all four models, the probability that a graph is IK goes to
one as the number of vertices increases.
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Graph minors

We say H is a minor of G , if H is obtained by contracting edges in
a subgraph of G .

Figure: Example of edge contraction

Every subgraph is a minor, but minor is a bigger class.
Think of a minor as a “topological” subgraph.
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Key Observation

Theorem -1
If |V | = n ≥ 7 and |E | ≥ 5n − 14, then G is intrinsically knotted.

Follows from Mader (1968): such a graph has a K7 minor.
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Theorem 1
In model 2.5 and 3, there’s a constant nIK such that, when
n ≥ nIK , at least half of the graphs with n vertices are IK.

We can show that 13 ≤ nIK ≤ 18, but leave open the question of
the exact value of nIK .

Lemma 2
When n ≥ 18, either G or its complement is intrinsically knotted.

(Pavelescu and Pavelescu, 2017): There is a self-complementary
G , with |V | = 12 that is not IK (in fact 2-apex).

G is 2-apex if there are vertices a and b so that G − a, b is planar.
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Lemma 2
When n ≥ 18, either G or its complement is intrinsically knotted.

Indeed, at least one of the graphs has

|E | ≥ 1

2

(
n

2

)
=

1

4
n(n − 1).

Since n ≥ 18, we have |E | ≥ 5n − 14.
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Theorem 1
In model 2.5 and 3, there’s a constant nIK such that, when
n ≥ nIK , at least half of the graphs with n vertices are IK.

To prove the theorem, pair up graphs with their complements.

In each pair, at least one of the two graphs is intrinsically knotted.

It follows that at least half the graphs are intrinsically knotted.
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Theorem 2
In all four models, the probability that a graph is intrinsically
knotted goes to 1 as |V | increases.

Proof (Model 2): Let 0 < p ≤ 1.
By Lemma 2, Prob(G not IK ) ≤ Prob(|E | ≤ 5n − 15).

Prob(G not IK ) ≤ Prob(|E | ≤ 5n − 15)

=
5n−15∑
k=0

(
N

k

)
pk(1− p)N−k ≤ e−2t2N

The last inequality is due to Hoeffding, with t = p − (5n − 15)/N
and shows probability goes to 0 as n goes to infinity.
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m-apex graphs

If n ≥ nIK and |V | = n, then G or its complement is IK.

Similarly define nNmA for the “not m-apex” property.

A graph is m-apex if there are m (or fewer) vertices whose deletion
makes G planar.
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m-apex graphs

Theorem 3
In Model 2.5 and 3, if n ≥ nNmA, then at least half the graphs are
not m-apex.

Proof: Pair up each graph with its complement.

Theorem 4
nNmA = 2m + 9
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Proof of Theorem 4

Theorem 4
nNmA = 2m + 9

Proof:
Show nNmA ≥ 2m + 9:

Construct G with |V | = 2m + 8 so that G and its complement
both m-apex.
For example, there is a self-complementary planar G with |V | = 8.
For m > 0, the construction is due to Pavelescu & Pavelescu, 2017.

T.W. Mattman & K. Ichihara Most graphs are knotted
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Proof of Theorem 4 (continued)

Theorem 4
nNmA = 2m + 9

Proof (continued):

Show nNmA ≤ 2m + 9:

(BHK 1962) showed this for a = 0. (0-apex = planar)

For m > 0, suppose instead |V | = 2m + 9 and G and its
complement are both m-apex.

Deleting at most 2m vertices, create subgraph H with |VH | ≥ 9
and H and its complement both planar.

This contradicts BHK.
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