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Figure: Graphs formed from K6 by sequence of ∆Y or Y ∆ moves

K6 is Y -free or “parentless”
The Petersen graph is ∆-free or “childless”
Theorem[RST]: The Petersen family are precisely the minor
minimal intrinsically linked graphs
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KS Graphs

K7 and its 13 descendants - introduced by Kohara and Suzuki

K7 is Y -free or “parentless”

The Heawood Graph (14, 21) is ∆-free or “childless”

Theorem[LKLO,BM]: The KS graphs are the minor minimal
intrinsically knotted graphs of 21 edges.
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Heawood Family

Figure: Graphs formed from K7 by sequence of ∆Y or Y ∆ moves

Includes the KS Graphs. So includes K7 and the Heawood graph.
Includes six additional graphs that are not IK.
How to characterise this family?
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Characterisation of the Heawood family

Theorem[HNTY]: The graphs in the Heawood family are minor
minimal I(K or C3L).

C3L (completely 3–linked) — contains a 3-link with nonsplittable
2-component sublinks

Lemma[HNTY]: I(K or C3L) is preserved by ∆Y

Lemma[HNTY]: MMI(K or C3L) is preserved by Y ∆
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An alternate characterisation of Heawood family?

Conjestion: Is the Heawood family the set of minor minimal not
2–apex (MMN2A) graphs on 21 edges?

2–apex — removing ≤ 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ∆Y : Example J1 t K5

N2A not preserved under Y ∆ : Example K3,3 t K3,3 t K3,3

Note that K3,3 t K3,3 t K3,3 is MMN2A
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Results

Proposition 1: If G is MMN2A with |E (G )| = 21 and
|V (G )| 6= 11, 12, 13, then G is Heawood.

Two cases: |V (G )| > 13 and |V (G )| < 11. Second case relies on

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If
G is N2A and a Y ∆ move takes G to G ′, then G ′ is also N2A.

Question: Does Y ∆ preserve N2A on the set of graphs with 21
edges?
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Proofs
Questions

Case 1: |V (G)| > 13
Proof of Proposition 2
Case 2: |V (G)| < 11

Case 1: |V (G )| > 13

MMN2A graph has min. degree ≥ 3

(Contract edges of deg. 1 or 2
vertices; Delete degree 0 vertices)
21 edges =⇒ Degree sum = 42 =⇒ at most 42/3 = 14 vertices.
If 14 vertices, G is cubic (3–regular)

Figure: The Heawood graph, C14

Suppose |V (G )| = 14. Want to argue that G is C14.
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Case 1: |V (G)| > 13
Proof of Proposition 2
Case 2: |V (G)| < 11

G MMN2A with 14 vertices implies C14

Suppose G is MMN2A with 14 vertices.

Then, G is cubic.
G − a, b is non planar with degree sequence (36, 26).
Essentially a K3,3 ∪ 6 vertices of degree 2.

a

x

y

z

Figure: G − b has form shown
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G MMN2A with 14 vertices implies C14

a

x

y

z

Figure: G − b has form shown

Then G − b,w3 is, essentially, a K3,3.

G − w3 is again of form shown above with b taking the place of a.
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G MMN2A with 14 vertices implies C14

Since a and b have no common neighbours, we deduce

ax

y

z

bb

b b

ax

y

z

b

b

b

b

Figure: G − w3 is one of these

In either case, adding in w3 gives the Heawood graph C14
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Questions

Case 1: |V (G)| > 13
Proof of Proposition 2
Case 2: |V (G)| < 11

Proof of Proposition 2

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If
G is N2A and a Y ∆ move takes G to G ′, then G ′ is also N2A.

7 vertices: G is K7 and admits no Y ∆ moves

8 vertices: K7 t K1 (no Y ∆ move) or H8 (which gives G ′ = K7.)

9 vertices: [M–] G is a Heawood (family) graph (+ isolated
vertices) and Y ∆ gives another Heawood graph
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Questions

Case 1: |V (G)| > 13
Proof of Proposition 2
Case 2: |V (G)| < 11

10 vertex case

This leaves case where G is (10,21) and N2A

Suppose Y ∆ results in G ′; must show G ′ is also N2A

For a contradiction, suppose G ′ is 2–apex. i.e., G ′ − a, b is planar.

Then the “triangle” must be in G ′ − a, b and divides plane into
two discs.

H1 = part of G ′ − a, b inside triangle (induced subgraph on interior
vertices)

H2 = part of G ′ − a, b outside triangle
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10 vertex case - analyze H1 and H2

a

b

H1 H2

Figure: H1 is inside and H2 outside
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Figure: H1 is inside and H2 outside

H1 and H2 both adjacent to all three triangle vertices.

(if not, reverse Y ∆ move and deduce G is also 2–apex)
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Proof of Proposition 2
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10 vertex case - analyze H1 and H2

H1 and H2 both adjacent to all three triangle vertices.

As H1 and H2 have a total of four vertices, only a few possibilities

Straightforward to run through the cases and deduce a
contradiction.

Conclude that G ′ is N2A when |V (G )| = 10 to complete proof of
Prop. 2
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Proofs
Questions

Case 1: |V (G)| > 13
Proof of Proposition 2
Case 2: |V (G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V (G )| < 11. We’ll argue G is in
Heawood family.

Earlier work showed this in case |V (G )| < 10.

Assume |V (G )| = 10.

By Proposition 2, G has minimal degree at least four.

This leaves only a few possible graphs to consider.

Running through the cases, we conclude the proof of Proposition 1
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Questions

Question 1: Is the Heawood family the set of MMN2A graphs on
21 edges?

Question 2: Does Y ∆ preserve N2A on the set of graphs with 21
edges?

Yes to Q1 implies Q2 also affirmative.

Question 3: What is the simplest G that is N2A but admits Y ∆
move to G ′ that’s not N2A?
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Questions

An answer

[HNTY] characterise the Heawood family as MMI(K or C3L).

They also show that I(K or C3L) =⇒ N2A.

Affirmative answer to Q1 implies that Heawood family are precisely
the set of MMI(K or C3L) graphs on 21 edges.

(Compare [LKLO,BM])
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