Graphs on 21 edges that are 2-apex

J. Barsotti and T.W. Mattman

June 6, 2013 Spatial Graphs Conference

< 4 ₽ > < 2 >

< ≣ >

Two Families

Petersen Family Heawood Family I(K or C3L) MMN2A?

Proofs

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Questions

▲ 御 ▶ → ミ ▶

- < ≣ →

Petersen Family Heawood Family I(K or C3L) MMN2A?

Petersen Family

Figure: Graphs formed from K_6 by sequence of ΔY or $Y\Delta$ moves

・ロト ・日本 ・モト ・モト

Petersen Family Heawood Family I(K or C3L) MMN2A?

Petersen Family

Figure: Graphs formed from K_6 by sequence of ΔY or $Y\Delta$ moves

 K_6 is Y-free or "parentless"

・ロト ・回ト ・ヨト

- < ≣ →

Petersen Family Heawood Family I(K or C3L) MMN2A?

Petersen Family

Figure: Graphs formed from K_6 by sequence of ΔY or $Y\Delta$ moves

 K_6 is Y-free or "parentless" The Petersen graph is Δ -free or "childless"

∃ >

Petersen Family Heawood Family I(K or C3L) MMN2A?

Petersen Family

Figure: Graphs formed from K_6 by sequence of ΔY or $Y\Delta$ moves

 K_6 is Y-free or "parentless" The Petersen graph is Δ -free or "childless" <u>Theorem[RST]</u>: The Petersen family are precisely the minor minimal intrinsically linked graphs

Petersen Family Heawood Family I(K or C3L) MMN2A?

KS Graphs

${\it K}_7$ and its 13 descendants - introduced by Kohara and Suzuki

イロン イヨン イヨン イヨン

Petersen Family Heawood Family I(K or C3L) MMN2A?

KS Graphs

 K_7 and its 13 descendants - introduced by Kohara and Suzuki

K₇ is Y-free or "parentless"

・ロン ・回と ・ヨン ・ヨン

Petersen Family Heawood Family I(K or C3L) MMN2A?

KS Graphs

 K_7 and its 13 descendants - introduced by Kohara and Suzuki

K₇ is Y-free or "parentless"

The Heawood Graph (14, 21) is Δ -free or "childless"

・ロン ・回と ・ヨン・

Petersen Family Heawood Family I(K or C3L) MMN2A?

KS Graphs

 K_7 and its 13 descendants - introduced by Kohara and Suzuki

K₇ is Y-free or "parentless"

The Heawood Graph (14, 21) is Δ -free or "childless"

<u>Theorem</u>[LKLO,BM]: The KS graphs are the minor minimal intrinsically knotted graphs of 21 edges.

イロン イヨン イヨン イヨン

Petersen Family Heawood Family I(K or C3L) MMN2A?

Heawood Family

Figure: Graphs formed from K_7 by sequence of ΔY or $Y\Delta$ moves

・ロト ・日子・ ・ヨト

- < ≣ →

Petersen Family Heawood Family I(K or C3L) MMN2A?

Heawood Family

Figure: Graphs formed from K_7 by sequence of ΔY or $Y\Delta$ moves

Includes the KS Graphs.

・ロト ・回ト ・ヨト

< ≣⇒

Petersen Family Heawood Family I(K or C3L) MMN2A?

Heawood Family

Figure: Graphs formed from K_7 by sequence of ΔY or $Y\Delta$ moves

Includes the KS Graphs. So includes K_7 and the Heawood graph.

・ロト ・回ト ・ヨト

< ≣ >

Petersen Family Heawood Family I(K or C3L) MMN2A?

Heawood Family

Figure: Graphs formed from K_7 by sequence of ΔY or $Y\Delta$ moves

Includes the KS Graphs. So includes K_7 and the Heawood graph. Includes six additional graphs that are not IK.

Petersen Family Heawood Family I(K or C3L) MMN2A?

Heawood Family

Figure: Graphs formed from K_7 by sequence of ΔY or $Y\Delta$ moves

Includes the KS Graphs. So includes K_7 and the Heawood graph. Includes six additional graphs that are not IK. How to characterise this family?

Petersen Family Heawood Family I(K or C3L) MMN2A?

Characterisation of the Heawood family

<u>Theorem[HNTY]</u>: The graphs in the Heawood family are minor minimal I(K or C3L).

・ロン ・回と ・ヨン ・ヨン

Petersen Family Heawood Family I(K or C3L) MMN2A?

Characterisation of the Heawood family

<u>Theorem[HNTY]</u>: The graphs in the Heawood family are minor minimal I(K or C3L).

C3L (completely 3–linked) — contains a 3-link with nonsplittable 2-component sublinks

・ロン ・回と ・ヨン ・ヨン

2

Petersen Family Heawood Family I(K or C3L) MMN2A?

Characterisation of the Heawood family

<u>Theorem[HNTY]</u>: The graphs in the Heawood family are minor minimal I(K or C3L).

C3L (completely 3–linked) — contains a 3-link with nonsplittable 2-component sublinks

<u>Lemma[HNTY]</u>: I(K or C3L) is preserved by ΔY

・ロト ・回ト ・ヨト ・ヨト

Petersen Family Heawood Family I(K or C3L) MMN2A?

Characterisation of the Heawood family

<u>Theorem[HNTY]</u>: The graphs in the Heawood family are minor minimal I(K or C3L).

C3L (completely 3–linked) — contains a 3-link with nonsplittable 2-component sublinks

<u>Lemma[HNTY]</u>: I(K or C3L) is preserved by ΔY

<u>Lemma[HNTY]</u>: MMI(K or C3L) is preserved by $Y\Delta$

・ロン ・回 と ・ ヨ と ・ ヨ と

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

 $\frac{\text{Conjestion: Is the Heawood family the set of minor minimal not}}{2-\text{apex (MMN2A) graphs on 21 edges?}}$

・ロン ・回と ・ヨン・

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A.

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ΔY

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ΔY : Example $J_1 \sqcup K_5$

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ΔY : Example $J_1 \sqcup K_5$

N2A not preserved under $Y\Delta$

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ΔY : Example $J_1 \sqcup K_5$

N2A not preserved under $Y\Delta$: Example $K_{3,3} \sqcup K_{3,3} \sqcup K_{3,3}$

Petersen Family Heawood Family I(K or C3L) MMN2A?

An alternate characterisation of Heawood family?

Conjection: Is the Heawood family the set of minor minimal not $\overline{2-apex}$ (MMN2A) graphs on 21 edges?

2-apex — removing \leq 2 vertices results in planar graph.

Graphs in Heawood family are MMN2A. Are there others?

N2A not preserved under ΔY : Example $J_1 \sqcup K_5$

N2A not preserved under $Y\Delta$: Example $K_{3,3} \sqcup K_{3,3} \sqcup K_{3,3}$

Note that $K_{3,3} \sqcup K_{3,3} \sqcup K_{3,3}$ is MMN2A

(ロ) (同) (E) (E) (E)

Petersen Family Heawood Family I(K or C3L) MMN2A?

Results

Proposition 1: If G is MMN2A with |E(G)| = 21 and $\overline{|V(G)| \neq 11, 12, 13}$, then G is Heawood.

・ロン ・回と ・ヨン ・ヨン

Petersen Family Heawood Family I(K or C3L) MMN2A?

Results

Proposition 1: If G is MMN2A with |E(G)| = 21 and $\overline{|V(G)| \neq 11, 12, 13}$, then G is Heawood.

Two cases: |V(G)| > 13 and |V(G)| < 11.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Petersen Family Heawood Family I(K or C3L) MMN2A?

Results

Proposition 1: If G is MMN2A with |E(G)| = 21 and $\overline{|V(G)| \neq 11, 12, 13}$, then G is Heawood.

Two cases: |V(G)| > 13 and |V(G)| < 11. Second case relies on

・ロン ・回 と ・ ヨ と ・ ヨ と

2

Petersen Family Heawood Family I(K or C3L) MMN2A?

Results

Proposition 1: If G is MMN2A with |E(G)| = 21 and $\overline{|V(G)| \neq 11, 12, 13}$, then G is Heawood.

Two cases: |V(G)| > 13 and |V(G)| < 11. Second case relies on

<u>Proposition 2</u>: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Petersen Family Heawood Family I(K or C3L) MMN2A?

Results

Proposition 1: If G is MMN2A with |E(G)| = 21 and $\overline{|V(G)| \neq 11, 12, 13}$, then G is Heawood.

Two cases: |V(G)| > 13 and |V(G)| < 11. Second case relies on

<u>Proposition 2</u>: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

<u>Question</u>: Does $Y\Delta$ preserve N2A on the set of graphs with 21 edges?

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 1: |V(G)| > 13

MMN2A graph has min. degree \geq 3

イロン イヨン イヨン イヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 1: |V(G)| > 13

MMN2A graph has min. degree \geq 3 (Contract edges of deg. 1 or 2 vertices; Delete degree 0 vertices)

イロン イヨン イヨン イヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 1: |V(G)| > 13

MMN2A graph has min. degree \geq 3 (Contract edges of deg. 1 or 2 vertices; Delete degree 0 vertices)

21 edges \implies Degree sum = 42 \implies at most 42/3 = 14 vertices.

イロン イ部ン イヨン イヨン 三日
Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 1: |V(G)| > 13

MMN2A graph has min. degree ≥ 3 (Contract edges of deg. 1 or 2 vertices; Delete degree 0 vertices) 21 edges \implies Degree sum = 42 \implies at most 42/3 = 14 vertices. If 14 vertices, *G* is cubic (3-regular)

(ロ) (同) (E) (E) (E)

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 1: |V(G)| > 13

MMN2A graph has min. degree ≥ 3 (Contract edges of deg. 1 or 2 vertices; Delete degree 0 vertices) 21 edges \implies Degree sum = 42 \implies at most 42/3 = 14 vertices. If 14 vertices, *G* is cubic (3-regular)

Figure: The Heawood graph, C_{14}

Suppose |V(G)| = 14. Want to argue that G is C_{14} .

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Suppose G is MMN2A with 14 vertices.

・ロト ・回ト ・ヨト ・ヨト

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Suppose G is MMN2A with 14 vertices. Then, G is cubic.

・ロト ・回ト ・ヨト ・ヨト

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Suppose G is MMN2A with 14 vertices. Then, G is cubic. G - a, b is non planar with degree sequence $(3^6, 2^6)$.

イロン イヨン イヨン イヨン

2

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Suppose *G* is MMN2A with 14 vertices. Then, *G* is cubic. G - a, b is non planar with degree sequence $(3^6, 2^6)$. Essentially a $K_{3,3} \cup 6$ vertices of degree 2.

・ロト ・回ト ・ヨト ・ヨト

3

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Suppose *G* is MMN2A with 14 vertices. Then, *G* is cubic. G - a, b is non planar with degree sequence $(3^6, 2^6)$. Essentially a $K_{3,3} \cup 6$ vertices of degree 2.

Figure: G - b has form shown

• E •

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Figure: G - b has form shown

Then G - b, w_3 is, essentially, a $K_{3,3}$.

・ロン ・回と ・ヨン・

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Figure: G - b has form shown

Then G - b, w_3 is, essentially, a $K_{3,3}$. $G - w_3$ is again of form shown above with b taking the place of a.

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Since a and b have no common neighbours, we deduce

Figure: $G - w_3$ is one of these

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

G MMN2A with 14 vertices implies C_{14}

Since a and b have no common neighbours, we deduce

Figure: $G - w_3$ is one of these

In either case, adding in w_3 gives the Heawood graph C_{14}

・ロン ・回と ・ヨン ・ヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Proof of Proposition 2

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

・ロン ・回と ・ヨン ・ヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Proof of Proposition 2

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

7 vertices: G is K_7 and admits no $Y\Delta$ moves

イロト イポト イヨト イヨト

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Proof of Proposition 2

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

7 vertices: G is K_7 and admits no $Y\Delta$ moves

8 vertices: $K_7 \sqcup K_1$ (no $Y\Delta$ move) or H_8 (which gives $G' = K_7$.)

イロト イポト イヨト イヨト

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Proof of Proposition 2

Proposition 2: Suppose G has 21 edges and at most 10 vertices. If \overline{G} is N2A and a $Y\Delta$ move takes G to G', then G' is also N2A.

7 vertices: G is K_7 and admits no $Y\Delta$ moves

8 vertices: $K_7 \sqcup K_1$ (no $Y\Delta$ move) or H_8 (which gives $G' = K_7$.)

9 vertices: [M–] G is a Heawood (family) graph (+ isolated vertices) and $Y\Delta$ gives another Heawood graph

イロト イポト イヨト イヨト

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

This leaves case where G is (10,21) and N2A

J. Barsotti and T.W. Mattman Graphs on 21 edges that are 2-apex

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

This leaves case where G is (10,21) and N2A

Suppose $Y\Delta$ results in G'; must show G' is also N2A

・ロン ・回と ・ヨン・

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex.

・ロン ・回と ・ヨン・

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.

・ロン ・回と ・ヨン・

 $\begin{array}{l} \mbox{Case 1:} |V(G)| > 13 \\ \mbox{Proof of Proposition 2} \\ \mbox{Case 2:} |V(G)| < 11 \end{array}$

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.
- Then the "triangle" must be in G' a, b

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.
- Then the "triangle" must be in G' a, b and divides plane into two discs.

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.
- Then the "triangle" must be in G' a, b and divides plane into two discs.
- $H_1 =$ part of G' a, b inside triangle

・ロン ・回 と ・ 回 と ・ 回 と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.
- Then the "triangle" must be in G' a, b and divides plane into two discs.

 $H_1 = \text{part of } G' - a, b$ inside triangle (induced subgraph on interior vertices)

(ロ) (同) (E) (E) (E)

 $\begin{array}{l} \mbox{Case 1:} |V(G)| > 13 \\ \mbox{Proof of Proposition 2} \\ \mbox{Case 2:} |V(G)| < 11 \end{array}$

10 vertex case

- This leaves case where G is (10,21) and N2A
- Suppose $Y\Delta$ results in G'; must show G' is also N2A
- For a contradiction, suppose G' is 2-apex. i.e., G' a, b is planar.
- Then the "triangle" must be in G' a, b and divides plane into two discs.

 $H_1 = \text{part of } G' - a, b$ inside triangle (induced subgraph on interior vertices)

 $H_2 = \text{part of } G' - a, b \text{ outside triangle}$

(ロ) (同) (E) (E) (E)

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

Figure: H_1 is inside and H_2 outside

・ロン ・回 と ・ ヨン ・ ヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

Figure: H_1 is inside and H_2 outside

 H_1 and H_2 both adjacent to all three triangle vertices.

・ロト ・回ト ・ヨト

∢ ≣⇒

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

Figure: H_1 is inside and H_2 outside

 H_1 and H_2 both adjacent to all three triangle vertices. (if not, reverse $Y\Delta$ move and deduce G is also 2-apex)

Image: A (1)

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

 H_1 and H_2 both adjacent to all three triangle vertices.

・ロン ・回 と ・ヨン ・ヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

 H_1 and H_2 both adjacent to all three triangle vertices.

As H_1 and H_2 have a total of four vertices, only a few possibilities

・ロン ・回と ・ヨン ・ヨン

2

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

 H_1 and H_2 both adjacent to all three triangle vertices.

As H_1 and H_2 have a total of four vertices, only a few possibilities

Straightforward to run through the cases and deduce a contradiction.

イロン イヨン イヨン イヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

10 vertex case - analyze H_1 and H_2

 H_1 and H_2 both adjacent to all three triangle vertices.

As H_1 and H_2 have a total of four vertices, only a few possibilities

Straightforward to run through the cases and deduce a contradiction.

Conclude that G' is N2A when |V(G)| = 10 to complete proof of Prop. 2

・ロン ・回 と ・ ヨ と ・ ヨ と

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

・ロン ・回と ・ヨン ・ヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

Earlier work showed this in case |V(G)| < 10.

イロン イヨン イヨン イヨン

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

Earlier work showed this in case |V(G)| < 10.

Assume |V(G)| = 10.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

Earlier work showed this in case |V(G)| < 10.

Assume |V(G)| = 10.

By Proposition 2, G has minimal degree at least four.

・ロン ・回 と ・ ヨ と ・ ヨ と

2

Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

Earlier work showed this in case |V(G)| < 10.

Assume |V(G)| = 10.

By Proposition 2, G has minimal degree at least four.

This leaves only a few possible graphs to consider.

・ロト ・回ト ・ヨト ・ヨト
Case 1: |V(G)| > 13Proof of Proposition 2 Case 2: |V(G)| < 11

Case 2 of Proposition 1

Suppose G is MMN2A with |V(G)| < 11. We'll argue G is in Heawood family.

Earlier work showed this in case |V(G)| < 10.

Assume |V(G)| = 10.

By Proposition 2, G has minimal degree at least four.

This leaves only a few possible graphs to consider.

Running through the cases, we conclude the proof of Proposition 1

(ロ) (同) (E) (E) (E)

Questions

 $\frac{Question \ 1}{21 \ edges?} : \ \mbox{Is the Heawood family the set of MMN2A graphs on}$

・ロン ・回と ・ヨン ・ヨン

Questions

 $\underline{\text{Question 1}}:$ Is the Heawood family the set of MMN2A graphs on 21 edges?

<u>Question 2</u>: Does $Y\Delta$ preserve N2A on the set of graphs with 21 edges?

- 4 同 2 4 日 2 4 日 2

Questions

 $\frac{Question \ 1}{21 \ edges?}$ Is the Heawood family the set of MMN2A graphs on

<u>Question 2</u>: Does $Y\Delta$ preserve N2A on the set of graphs with 21 edges?

Yes to Q1 implies Q2 also affirmative.

(本間) (本語) (本語)

Questions

 $\frac{\text{Question 1}}{\text{21 edges?}}: \text{ Is the Heawood family the set of MMN2A graphs on }$

<u>Question 2</u>: Does $Y\Delta$ preserve N2A on the set of graphs with 21 edges?

Yes to Q1 implies Q2 also affirmative.

<u>Question 3</u>: What is the simplest G that is N2A but admits $Y\Delta$ move to G' that's not N2A?

▲□→ ▲目→ ▲目→

An answer

[HNTY] characterise the Heawood family as MMI(K or C3L).

・ロン ・回と ・ヨン ・ヨン

An answer

[HNTY] characterise the Heawood family as MMI(K or C3L).

They also show that $I(K \text{ or } C3L) \Longrightarrow N2A$.

・ロト ・回ト ・ヨト ・ヨト

An answer

[HNTY] characterise the Heawood family as MMI(K or C3L).

They also show that $I(K \text{ or } C3L) \Longrightarrow N2A$.

Affirmative answer to Q1 implies that Heawood family are precisely the set of MMI(K or C3L) graphs on 21 edges.

・ロト ・回ト ・ヨト ・ヨト

2

An answer

[HNTY] characterise the Heawood family as MMI(K or C3L).

They also show that $I(K \text{ or } C3L) \Longrightarrow N2A$.

Affirmative answer to Q1 implies that Heawood family are precisely the set of MMI(K or C3L) graphs on 21 edges.

(Compare [LKLO,BM])

イロト イヨト イヨト イヨト

2

References

- BM J.Barsotti & T.W.Mattman. Intrinsically knotted graphs with 21 edges. Preprint (arXiv).
- HNTY R.Hanaki, R.Nikkuni, K.Taniyama, & A.Yamazaki. On intrinsically knotted or completely 3-linked graphs. *Pacific J. Math.* (2011).
 - KS T.Kohara and S.Suzuki. Some remarks on knots and links in spatial graphs. in *Knots 90, Osaka* (1992).
- LKLO M.J.Lee, H.J.Kim, H.J.Lee, & S.Oh. Exactly fourteen intrinsically knotted graphs have 21 edges. Preprint (arXiv).
 - RST N.Roberston, P.Seymour & Thomas. Sachs's linkless embedding conjecture. *J. Combin, Theory Ser. B* (2004).