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Spatial Graph Invariants

There are many spatial graph invariants, but all have limitations.

Some examples are:

• Yamada polynomial – ambient isotopy invariant for 3-valent
graphs, otherwise it’s only a regular isotopy invariant (i.e., it
isn’t invariant under Reidemeister 1 moves).

• Yokota polynomial – ambient isotopy invariant, but difficult to
compute, and can’t distinguish mirror images.

• Wu invariant – homology invariant (hence ambient isotopy
invariant), depends on labeling of vertices, and tedious to
compute for a new graph.

• Simon invariant – ambient isotopy invariant, easy to compute,
only defined for K5 and K3,3, depends on labeling of vertices.
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Wu and Simon invariants depend on vertex labels

The Wu or Simon invariant can be used to show:

For any embedding Γ of K5 or K3,3 in S3, there is no orientation
reversing homeomorphism of (S3, Γ) which fixes every vertex.
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Wu and Simon invariants depend on vertex labels

The Wu or Simon invariant can be used to show:

For any embedding Γ of K5 or K3,3 in S3, there is no orientation
reversing homeomorphism of (S3, Γ) which fixes every vertex.

However, these graphs have a achiral embeddings if you don’t
require vertices to be fixed.

K
5 K

3, 3

achiral embeddings

1 1

2 2

Reflection interchanges vertices 1 and 2.

Erica Flapan, Will Fletcher, Ryo Nikkuni Reduced Wu and Generalized Simon Invariants



New invariants

Definition

A graph is said to be intrinsically chiral if no embedding of it in
S3 has an orientation reversing homeomorphism.

In this talk we define numerical invariants of spatial graphs with
the properties:

• They are easy to compute.

• They can be used to prove intrinsic chirality.

• They give lower bounds for the minimum crossing number of
an embedding.
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The Wu invariant

A combinatorial method for computing the Wu invariant,
introduced by Taniyama:
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The Wu invariant

A combinatorial method for computing the Wu invariant,
introduced by Taniyama:

Let G have vertices v1, v2, . . . , vm and oriented edges e1, e2, . . . , en.

For every disjoint pair ei and ej define a variable E ei ,ej = E ej ,ei .

Let Z (G ) be the free Z-module generated by the E ei ,ej ’s.
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The Wu invariant

A combinatorial method for computing the Wu invariant,
introduced by Taniyama:

Let G have vertices v1, v2, . . . , vm and oriented edges e1, e2, . . . , en.

For every disjoint pair ei and ej define a variable E ei ,ej = E ej ,ei .

Let Z (G ) be the free Z-module generated by the E ei ,ej ’s.

v 1
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d 1

d 2

d 3

Example:

2K 3

Z (2K3) =

〈E c1,d1 ,E c1,d2 ,E c1,d3 ,E c2,d1 ,E c2,d2 ,E c2,d3,E c3,d1 ,E c3,d2 ,E c3,d3〉
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Taniyama’s method for computing the Wu invariant

Write I (k) = s and T (k) = r to mean the oriented edge ek has
initial vertex vs and terminal vertex vr .

For every edge ei and disjoint vertex vs , define a variable V ei ,vs .

Definition

For a given edge ei and disjoint vertex vs , define

δ(V ei ,vs ) =
∑

I (k)=s

ei∩ek=∅

E ei ,ek −
∑

T (j)=s

ei∩ej=∅

E ei ,ej ∈ Z (G )

That is, δ(V ei ,vs ) is the sum of all edge variables disjoint from ei
with initial vertex vs , minus the sum of all edge variables disjoint
from ei with terminal vertex vs .
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Taniyama’s method for computing the Wu invariant

v 1

v2 v3

c1

c2

c3

u 1

u 2 u 3

d 1

d 2

d 3

Example:

2K 3

δ(V c1,u1) =
∑

I (k)=u1
c1∩ek=∅

E c1,ek −
∑

T (j)=u1
c1∩ej=∅

E c1,ej = E c1,d1 − E c1,d3
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Taniyama’s method for computing the Wu invariant

v 1

v2 v3

c1

c2

c3

u 1

u 2 u 3

d 1

d 2

d 3

Example:

2K 3

δ(V c1,u1) =
∑

I (k)=u1
c1∩ek=∅

E c1,ek −
∑

T (j)=u1
c1∩ej=∅

E c1,ej = E c1,d1 − E c1,d3

Definition

B(G ) is defined as the submodule generated by all the δ(V ei ,vs ),
and the linking module is defined as L(G ) = Z (G )/B(G ).

In L(K3,3), we have [E c1,d1 ] = [E c1,d3 ]

It can be shown that L(2K3) = 〈[E c1,d1 ]〉 ∼= Z.
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Taniyama’s method for computing the Wu invariant

For an embedding f : G → S3, define ℓ(f (ei ), f (ej )) to be the sum
of the signs of crossings between f (ei ) and f (ej).

The Wu invariant is defined as

L(f ) =
∑

ei∩ej=∅

ℓ(f (ei ), f (ej ))[E
ei ,ej ] ∈ L(G )

v 1

v2 v 3

e1

e 2

e 3 u 1

u 2 u 3

d 1

d 2

d 3

Example

Recall L(2K3) = 〈[E e1,d1 ]〉.

L(f ) =
∑

ℓ(f (ei ), f (dj))[E
e1,d1 ] = 2lk(f )[E e1,d1 ] ∈ 〈[E e1,d1 ]〉
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The reduced Wu invariant

Taniyama proved the Wu invariant is a homology invariant.
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The reduced Wu invariant

Taniyama proved the Wu invariant is a homology invariant.

We obtain an integer valued invariant as follows.

Let G be a labeled graph with oriented edges and ε : L(G ) → Z be
a homomorphism. For any embedding f of G , define the reduced

Wu invariant L̃ε(f ) as the integer ε(L(f )). We write ε(ei , ej ) for
ε([E ei ,ej ]), then L̃ε(f ) =

ε


 ∑

ei∩ej=∅

ℓ(f (ei ), f (ej))[E
ei ,ej ]


 =

∑

ei∩ej=∅

ℓ(f (ei ), f (ej))ε(ei , ej )

That is, the sum of the crossing numbers between disjoint pairs of
edges multiplied by integer coefficients.
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Example

c1

c 2

c3 c4
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c6

b3
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K3,3

It can be shown (this is tedious) that for every pair of disjoint
edges a and b, in L(K3,3) we have [E a,b] = ε(a, b)[E c1,c3 ] where

ε(ci , cj ) = 1, ε(bi , bj) = 1, and

ε(ci , bj ) =

{
1 if ci and bj are parallel

−1 if ci and bj are anti-parallel
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Example

c1

c 2

c3 c4

c5

c6

b3

b 1

b 2

K3,3

It can be shown (this is tedious) that for every pair of disjoint
edges a and b, in L(K3,3) we have [E a,b] = ε(a, b)[E c1,c3 ] where

ε(ci , cj ) = 1, ε(bi , bj) = 1, and

ε(ci , bj ) =

{
1 if ci and bj are parallel

−1 if ci and bj are anti-parallel

Thus L(K3,3) = 〈[E c1,c3]〉. Hence for any embedding f of K3,3 the
Wu invariant of f is

L(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))[E c1,c3 ]
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The reduced Wu invariant of an oriented K3,3

From previous slide the Wu invariant of f : K3,3 → S3 is

L(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))[E c1,c3 ]

where ε(a, b) is ε(ci , cj ) = 1, ε(bi , bj) = 1, and

ε(ci , bj ) =

{
1 if ci and bj are parallel

−1 if ci and bj are anti-parallel

We define ε : L(K3,3) → Z by giving the value of ε on the
generator [E c1,c3] as ε(c1, c3) = 1.

Thus the reduced Wu invariant for f : K3,3 → S3 is the integer

L̃ε(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))

Erica Flapan, Will Fletcher, Ryo Nikkuni Reduced Wu and Generalized Simon Invariants



Reduced Wu invariant for an embedding of oriented K3,3

Recall, ε(a, b) is ε(ci , cj ) = 1, ε(bi , bj) = 1, and

ε(ci , bj ) =

{
1 if ci and bj are parallel

−1 if ci and bj are anti-parallel

b
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c1

c 2

c3 c4

c5

c6

b3

b 1

b 2

So for this embedding

L̃ε(f ) =
∑

a∩b=∅ ε(a, b)ℓ(f (a), f (b)) = ε(c3, c6)× (−1) = 1
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The Simon invariant

For the graphs K3,3 and K5, the Simon invariant is the same as the
reduced Wu invariant.

However, Simon proved invariance up to isotopy directly by
showing the value of

∑
a∩b=∅ ε(a, b)ℓ(f (a), f (b)) is unchanged by

Reidemeister moves for spatial graphs.

(I)

(II)

(III)

(IV)

(V)
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The generalized Simon invariant

By using Simon’s method we can create isotopy invariants of other
spatial graphs. In particular,

Let G be an oriented labeled graph. If we can define an
integer-valued function ε(a, b) such that for any projection of an
embedding f : G → S3 the value of

L̂ε(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))

is invariant under the Reidemeister moves, then we say L̂ε is a
generalized Simon invariant for G .
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The generalized Simon invariant

By using Simon’s method we can create isotopy invariants of other
spatial graphs. In particular,

Let G be an oriented labeled graph. If we can define an
integer-valued function ε(a, b) such that for any projection of an
embedding f : G → S3 the value of

L̂ε(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))

is invariant under the Reidemeister moves, then we say L̂ε is a
generalized Simon invariant for G .

Since the reduced Wu invariant is a homology invariant, it is
invariant under the Reidemeister moves.

Thus any reduced Wu invariant is also a generalized Simon
invariant.
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Generalized Simon invariants

The only difficulty in defining a generalized Simon invariant is
proving that

∑
a∩b=∅ ε(a, b)ℓ(f (a), f (b)) is invariant under

Reidmeister move (V).

(I)

(II)

(III)

(IV)

(V)

crossing within an 

edge is irrelevant

crossing between

adjacent edges is irrelevant

no effect on generalized

Simon invariant}
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A generalized Simon invariant for K7
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z3

z4
z5

z6

z7

The oriented cycle x1x2...x7 determines the oriented cycles
y1y2...y7 and z1z2...z7.
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A generalized Simon invariant for K7

x1
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Define ε(xi , yj) = −1 and

ε(xi , xj ) = ε(yi , yj ) = ε(zi , zj) = ε(xi , zj) = ε(yi , zj) = 1
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A generalized Simon invariant for K7

x1

x7
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z7

Define ε(xi , yj) = −1 and

ε(xi , xj ) = ε(yi , yj ) = ε(zi , zj) = ε(xi , zj) = ε(yi , zj) = 1

For any embedding f of K7,

L̂ε(f ) =
∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b))

is invariant under the Reidmeister moves.
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A generalized Simon invariant for K7

Thus L̂ε(f ) is a generalized Simon invariant.
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Note that if we reverse the orientation of x1x2...x7, it reverses the
orientations of all edges.

Hence L̂ε(f ) does not depend on the orientation of x1x2...x7.
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For every embedding of K7, L̂ε(f ) is odd

Lemma

For any embedding f of K7, the value of L̂ε(f ) is odd.

Proof: Consider an embedding f with this projection, with some
over-under information.

x1

x7
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x5

x4

x3

x2
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y3

y4

y5

y
6

y
7
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z3

z4
z5

z6

z7

Each crossing has ε(a, b) = 1, since there are no crossings between
any xi and any yj .
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For every embedding of K7, L̂ε(f ) is odd
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There are 35 crossings and all ε(a, b) = 1.

Thus L̂ε(f ) =
∑

a∩b=∅ ε(a, b)ℓ(f (a), f (b)) is odd.

Any crossing change will change the signed crossing number
between two edges by ±2.

So for any embedding L̂ε(f ) is odd.
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Proof that K7 is intrinsically chiral

Theorem

K7 is intrinsically chiral.

Proof: Suppose that K7 has an achiral embedding f .

Then there is an orientation reversing homeomorphism
h : (S3, f (K7)) → (S3, f (K7)).

Let J denote the set of Hamiltonian cycles with nonzero arf
invariant.

By Conway-Gordon, |J| is odd.

h permutes the elements of J, so the order of some orbit is an odd
number n.

∴ hn setwise fixes some Hamiltonian cycle with nonzero arf
invariant.
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Proof that K7 is intrinsically chiral
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Let x1x2...x7 be a Hamiltonian cycle preserved by hn. This defines
the oriented cycles y1y2...y7 and z1z2...z7.
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Proof that K7 is intrinsically chiral
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Let x1x2...x7 be a Hamiltonian cycle preserved by hn. This defines
the oriented cycles y1y2...y7 and z1z2...z7.

Since x1x2...x7 is setwise invariant under hn, the cycles y1y2...y7
and z1z2...z7 are also setwise invariant under hn.

Thus hn preserves all values of ε(a, b).

Also, if hn reverses the orientation of x1x2...x7, then hn reverses
the orientation of all edges.
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Proof that K7 is intrinsically chiral

Since hn is orientation reversing, for each pair of edges a and b

ℓ(hn(f (a)), hn(f (b))) = −ℓ(f (a), f (b))

Since hn preserves all values of ε(a, b), this means

L̂ε(h
n ◦ f )) = −

∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b)) = −L̂ε(f )
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Proof that K7 is intrinsically chiral

Since hn is orientation reversing, for each pair of edges a and b

ℓ(hn(f (a)), hn(f (b))) = −ℓ(f (a), f (b))

Since hn preserves all values of ε(a, b), this means

L̂ε(h
n ◦ f )) = −

∑

a∩b=∅

ε(a, b)ℓ(f (a), f (b)) = −L̂ε(f )

But since hn(f (K7)) = f (K7), we also have

L̂ε(h
n ◦ f )) = L̂ε(f )

Thus L̂ε(f ) = −L̂ε(f ). =⇒⇐= since L̂ε(f ) is odd.

Therefore K7 is intrinsically chiral.
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Other Examples

We use generalized Simon invariants to prove Möbius ladders
M2N+1 with N > 1 and Heawood graph C14 are intrinsically chiral.

. . .

. . .

x13

x1

x2
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x7x8
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x14
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y6

y7

x1

x2

x3

x4N+2

x2N+1

y1
y2

y3

y2N+1

M
2N+1 C

14

• Every homeomorphism of (S3, f (M2N+1)) with N > 1 leaves
the cycle x1 . . . x4N+2 setwise invariant [Simon].

• Every homeomorphism of (S3, f (C14))leaves either a 14-cycle
or a 12-cycle setwise invariant [Nikkuni].

Erica Flapan, Will Fletcher, Ryo Nikkuni Reduced Wu and Generalized Simon Invariants



Minimal Crossing Number

Generalized Simon invariants can be used to show that a particular
projection of a spatial graph has minimal crossing number.
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Minimal Crossing Number

Generalized Simon invariants can be used to show that a particular
projection of a spatial graph has minimal crossing number.

Theorem

Let f be an embedding of an oriented graph G in S3 with
generalized Simon invariant L̂ε(f ), and let c(f ) be the minimal
crossing number of f . For a given projection of f (G ), let mε(f ) be
the maximum of |ε(ei , ej )| over all disjoint edges with
ℓ(f (ei ), f (ej)) 6= 0. Then

c(f ) ≥
|L̂ε(f )|

mε(f )
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Minimal Crossing Number

Proof:

|L̂ε(f )| =

∣∣∣∣∣∣

∑

ei∩ej=∅

ε(ei , ej )ℓ(f (ei ), f (ej ))

∣∣∣∣∣∣

≤
∑

ei∩ej=∅

|ε(ei , ej )||ℓ(f (ei ), f (ej))|

≤ mε(f )
∑

ei∩ej=∅

|ℓ(f (ei ), f (ej))|

≤ mε(f )c(f )

Thus

c(f ) ≥
|L̂ε(f )|

mε(f )
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A generalized Simon invariant for K6
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ε(zi , zj) = 1, ε(xi , yj) = −1, ε(yi , zj) = 0

ε(xi , xj) =

{
3 if xi and xj are anti-parallel

2 if xi and xj are neither parallel nor anti-parallel

ε(yi , yj ) =

{
0 if yi and yj are anti-parallel

−1 if yi and yj are neither parallel nor anti-parallel

ε(xi , zj) =

{
−1 if xi and zj are anti-parallel

1 if xi and zj are parallel
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An embedding of K6
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mε(f ) is maximum of |ε(ei , ej )| over all disjoint edges with
ℓ(f (ei ), f (ej)) 6= 0. So mε(f ) = 1.
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An embedding of K6
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mε(f ) is maximum of |ε(ei , ej )| over all disjoint edges with
ℓ(f (ei ), f (ej)) 6= 0. So mε(f ) = 1.

L̃ε(f ) = ε(y3, y6) ·1+ ε(x4, z2) ·1+ ε(y1, y4) ·3 = −1−1−3 = −5
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An embedding of K6
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mε(f ) is maximum of |ε(ei , ej )| over all disjoint edges with
ℓ(f (ei ), f (ej)) 6= 0. So mε(f ) = 1.

L̃ε(f ) = ε(y3, y6) ·1+ ε(x4, z2) ·1+ ε(y1, y4) ·3 = −1−1−3 = −5

By the theorem,

c(f ) ≥
|L̂ε(f )|

mε(f )
= 5

Thus this projection has minimal crossing number.

Erica Flapan, Will Fletcher, Ryo Nikkuni Reduced Wu and Generalized Simon Invariants



Thanks

Thanks for listening and for coming to our conference.

See you in Tokyo in August.
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