Reduced Wu and Generalized Simon Invariants

Erica Flapan, Will Fletcher, Ryo Nikkuni

June 9, 2013

Spatial Graphs Conference

Spatial Graph Invariants

There are many spatial graph invariants, but all have limitations.

Some examples are:

- Yamada polynomial ambient isotopy invariant for 3-valent graphs, otherwise it's only a regular isotopy invariant (i.e., it isn't invariant under Reidemeister 1 moves).
- Yokota polynomial ambient isotopy invariant, but difficult to compute, and can't distinguish mirror images.
- Wu invariant homology invariant (hence ambient isotopy invariant), depends on labeling of vertices, and tedious to compute for a new graph.
- Simon invariant ambient isotopy invariant, easy to compute, only defined for K_5 and $K_{3,3}$, depends on labeling of vertices.

Wu and Simon invariants depend on vertex labels

The Wu or Simon invariant can be used to show:

For any embedding Γ of K_5 or $K_{3,3}$ in S^3 , there is no orientation reversing homeomorphism of (S^3,Γ) which fixes every vertex.

Wu and Simon invariants depend on vertex labels

The Wu or Simon invariant can be used to show:

For any embedding Γ of K_5 or $K_{3,3}$ in S^3 , there is no orientation reversing homeomorphism of (S^3,Γ) which fixes every vertex.

However, these graphs have a achiral embeddings if you don't require vertices to be fixed.

achiral embeddings K_{5}

Reflection interchanges vertices 1 and 2.

New invariants

Definition

A graph is said to be **intrinsically chiral** if no embedding of it in S^3 has an orientation reversing homeomorphism.

In this talk we define numerical invariants of spatial graphs with the properties:

- They are easy to compute.
- They can be used to prove intrinsic chirality.
- They give lower bounds for the minimum crossing number of an embedding.

The Wu invariant

A combinatorial method for computing the Wu invariant, introduced by Taniyama:

The Wu invariant

A combinatorial method for computing the Wu invariant, introduced by Taniyama:

Let G have vertices v_1, v_2, \dots, v_m and oriented edges e_1, e_2, \dots, e_n .

For every disjoint pair e_i and e_i define a variable $E^{e_i,e_j} = E^{e_j,e_i}$.

Let Z(G) be the free \mathbb{Z} -module generated by the E^{e_i,e_j} 's.

The Wu invariant

A combinatorial method for computing the Wu invariant, introduced by Taniyama:

Let G have vertices v_1, v_2, \ldots, v_m and oriented edges e_1, e_2, \ldots, e_n . For every disjoint pair e_i and e_i define a variable $E^{e_i, e_j} = E^{e_j, e_i}$.

Let Z(G) be the free \mathbb{Z} -module generated by the E^{e_i,e_j} 's.

Example: 2K₃

$$Z(2K_3) = \langle E^{c_1,d_1}, E^{c_1,d_2}, E^{c_1,d_3}, E^{c_2,d_1}, E^{c_2,d_2}, E^{c_2,d_3}, E^{c_3,d_1}, E^{c_3,d_2}, E^{c_3,d_3} \rangle$$

Write I(k) = s and T(k) = r to mean the oriented edge e_k has initial vertex v_s and terminal vertex v_r .

For every edge e_i and disjoint vertex v_s , define a variable V^{e_i,v_s} .

Definition

For a given edge e_i and disjoint vertex v_s , define

$$\delta(V^{e_i,v_s}) = \sum_{\substack{I(k)=s\\e_i\cap e_k=\emptyset}} E^{e_i,e_k} - \sum_{\substack{T(j)=s\\e_i\cap e_j=\emptyset}} E^{e_i,e_j} \in Z(G)$$

That is, $\delta(V^{e_i,v_s})$ is the sum of all edge variables disjoint from e_i with initial vertex v_s , minus the sum of all edge variables disjoint from e_i with terminal vertex v_s .

Example: 2K₃

$$\delta(V^{c_1,u_1}) = \sum_{\substack{I(k) = u_1 \\ c_1 \cap e_k = \emptyset}} E^{c_1,e_k} - \sum_{\substack{T(j) = u_1 \\ c_1 \cap e_j = \emptyset}} E^{c_1,e_j} = E^{c_1,d_1} - E^{c_1,d_3}$$

Example: 2K₃

$$\delta(V^{c_1,u_1}) = \sum_{\substack{I(k) = u_1 \\ c_1 \cap e_k = \emptyset}} E^{c_1,e_k} - \sum_{\substack{T(j) = u_1 \\ c_1 \cap e_j = \emptyset}} E^{c_1,e_j} = E^{c_1,d_1} - E^{c_1,d_3}$$

Definition

B(G) is defined as the submodule generated by all the $\delta(V^{e_i,v_s})$, and the **linking module** is defined as L(G) = Z(G)/B(G).

In $L(K_{3,3})$, we have $[E^{c_1,d_1}]=[E^{c_1,d_3}]$ It can be shown that $L(2K_3)=\langle [E^{c_1,d_1}]\rangle\cong\mathbb{Z}$.

For an embedding $f: G \to S^3$, define $\ell(f(e_i), f(e_j))$ to be the sum of the signs of crossings between $f(e_i)$ and $f(e_i)$.

The Wu invariant is defined as

$$\mathcal{L}(f) = \sum_{e_i \cap e_i = \emptyset} \ell(f(e_i), f(e_j))[E^{e_i, e_j}] \in \mathcal{L}(G)$$

Example

Recall
$$L(2K_3) = \langle [E^{e_1,d_1}] \rangle$$
.

$$\mathcal{L}(f) = \sum \ell(f(e_i), f(d_i))[E^{e_1, d_1}] = 2 \operatorname{lk}(f)[E^{e_1, d_1}] \in \langle [E^{e_1, d_1}] \rangle$$

The reduced Wu invariant

Taniyama proved the Wu invariant is a homology invariant.

The reduced Wu invariant

Taniyama proved the Wu invariant is a homology invariant.

We obtain an integer valued invariant as follows.

Let G be a labeled graph with oriented edges and $\varepsilon: L(G) \to \mathbb{Z}$ be a homomorphism. For any embedding f of G, define the **reduced Wu invariant** $\tilde{\mathcal{L}}_{\varepsilon}(f)$ as the integer $\varepsilon(\mathcal{L}(f))$. We write $\varepsilon(e_i, e_j)$ for $\varepsilon([E^{e_i, e_j}])$, then $\tilde{\mathcal{L}}_{\varepsilon}(f) =$

$$\varepsilon\left(\sum_{e_i\cap e_j=\emptyset}\ell(f(e_i),f(e_j))[E^{e_i,e_j}]\right)=\sum_{e_i\cap e_j=\emptyset}\ell(f(e_i),f(e_j))\varepsilon(e_i,e_j)$$

That is, the sum of the crossing numbers between disjoint pairs of edges multiplied by integer coefficients.

Example

It can be shown (this is tedious) that for every pair of disjoint edges a and b, in $L(K_{3,3})$ we have $[E^{a,b}] = \varepsilon(a,b)[E^{c_1,c_3}]$ where $\varepsilon(c_i,c_i)=1$, $\varepsilon(b_i,b_i)=1$, and

$$arepsilon(c_i,b_j) = egin{cases} 1 & ext{if } c_i ext{ and } b_j ext{ are parallel} \ -1 & ext{if } c_i ext{ and } b_j ext{ are anti-parallel} \end{cases}$$

Example

It can be shown (this is tedious) that for every pair of disjoint edges a and b, in $L(K_{3,3})$ we have $[E^{a,b}] = \varepsilon(a,b)[E^{c_1,c_3}]$ where $\varepsilon(c_i,c_i)=1$, $\varepsilon(b_i,b_i)=1$, and

$$\varepsilon(c_i, b_j) = \begin{cases}
1 & \text{if } c_i \text{ and } b_j \text{ are parallel} \\
-1 & \text{if } c_i \text{ and } b_j \text{ are anti-parallel}
\end{cases}$$

Thus $L(K_{3,3}) = \langle [E^{c_1,c_3}] \rangle$. Hence for any embedding f of $K_{3,3}$ the Wu invariant of f is

$$\mathcal{L}(f) = \sum \varepsilon(a,b)\ell(f(a),f(b))[E^{c_1,c_3}]$$

The reduced Wu invariant of an oriented $K_{3,3}$

From previous slide the Wu invariant of $f: K_{3,3} \to S^3$ is

$$\mathcal{L}(f) = \sum_{\mathbf{a} \cap b = \emptyset} \varepsilon(\mathbf{a}, b) \ell(f(\mathbf{a}), f(b)) [E^{c_1, c_3}]$$

where $\varepsilon(a,b)$ is $\varepsilon(c_i,c_j)=1$, $\varepsilon(b_i,b_j)=1$, and

$$\varepsilon(c_i, b_j) = \begin{cases} 1 & \text{if } c_i \text{ and } b_j \text{ are parallel} \\ -1 & \text{if } c_i \text{ and } b_j \text{ are anti-parallel} \end{cases}$$

We define $\varepsilon: L(K_{3,3}) \to \mathbb{Z}$ by giving the value of ε on the generator $[E^{c_1,c_3}]$ as $\varepsilon(c_1,c_3)=1$.

Thus the reduced Wu invariant for $f: K_{3,3} \to S^3$ is the integer

$$\widetilde{\mathcal{L}}_{arepsilon}(f) = \sum_{\mathbf{a} \in \mathbf{b} = 0} \varepsilon(\mathbf{a}, \mathbf{b}) \ell(f(\mathbf{a}), f(\mathbf{b}))$$

Reduced Wu invariant for an embedding of oriented $K_{3,3}$

Recall,
$$\varepsilon(a,b)$$
 is $\varepsilon(c_i,c_j)=1$, $\varepsilon(b_i,b_j)=1$, and

$$arepsilon(c_i,b_j) = egin{cases} 1 & ext{if } c_i ext{ and } b_j ext{ are parallel} \ -1 & ext{if } c_i ext{ and } b_j ext{ are anti-parallel} \end{cases}$$

So for this embedding

$$\tilde{\mathcal{L}}_{\varepsilon}(f) = \sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b)) = \varepsilon(c_3, c_6) \times (-1) = 1$$

The Simon invariant

For the graphs $K_{3,3}$ and K_5 , the Simon invariant is the same as the reduced Wu invariant.

However, Simon proved invariance up to isotopy directly by showing the value of $\sum_{a\cap b=\emptyset} \varepsilon(a,b)\ell(f(a),f(b))$ is unchanged by Reidemeister moves for spatial graphs.

The generalized Simon invariant

By using Simon's method we can create isotopy invariants of other spatial graphs. In particular,

Let G be an oriented labeled graph. If we can define an integer-valued function $\varepsilon(a,b)$ such that for any projection of an embedding $f:G\to S^3$ the value of

$$\widehat{L}_{\varepsilon}(f) = \sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b))$$

is invariant under the Reidemeister moves, then we say $\widehat{L}_{\varepsilon}$ is a **generalized Simon invariant** for G.

The generalized Simon invariant

By using Simon's method we can create isotopy invariants of other spatial graphs. In particular,

Let G be an oriented labeled graph. If we can define an integer-valued function $\varepsilon(a,b)$ such that for any projection of an embedding $f:G\to S^3$ the value of

$$\widehat{L}_{\varepsilon}(f) = \sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b))$$

is invariant under the Reidemeister moves, then we say $\widehat{L}_{\varepsilon}$ is a **generalized Simon invariant** for G.

Since the reduced Wu invariant is a homology invariant, it is invariant under the Reidemeister moves.

Thus any reduced Wu invariant is also a generalized Simon invariant.

Generalized Simon invariants

The only difficulty in defining a generalized Simon invariant is proving that $\sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b))$ is invariant under Reidmeister move (V).

The oriented cycle $\overline{x_1x_2...x_7}$ determines the oriented cycles $\overline{y_1y_2...y_7}$ and $\overline{z_1z_2...z_7}$.

Define
$$\varepsilon(x_i,y_j)=-1$$
 and

$$\varepsilon(x_i, x_j) = \varepsilon(y_i, y_j) = \varepsilon(z_i, z_j) = \varepsilon(x_i, z_j) = \varepsilon(y_i, z_j) = 1$$

Define
$$\varepsilon(x_i,y_j)=-1$$
 and

$$\varepsilon(x_i, x_j) = \varepsilon(y_i, y_j) = \varepsilon(z_i, z_j) = \varepsilon(x_i, z_j) = \varepsilon(y_i, z_j) = 1$$

For any embedding f of K_7 ,

$$\widehat{L}_{\varepsilon}(f) = \sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b))$$

is invariant under the Reidmeister moves.

Thus $\widehat{L}_{\varepsilon}(f)$ is a generalized Simon invariant.

Note that if we reverse the orientation of $\overline{x_1x_2...x_7}$, it reverses the orientations of all edges.

Hence $\widehat{L}_{\varepsilon}(f)$ does not depend on the orientation of $\overline{x_1x_2...x_7}$.

For every embedding of K_7 , $\widehat{L}_{\varepsilon}(f)$ is odd

Lemma

For any embedding f of K_7 , the value of $\widehat{L}_{\varepsilon}(f)$ is odd.

Proof: Consider an embedding f with this projection, with some over-under information.

Each crossing has $\varepsilon(a, b) = 1$, since there are no crossings between any x_i and any y_i .

For every embedding of K_7 , $\widehat{L}_{\varepsilon}(f)$ is odd

There are 35 crossings and all $\varepsilon(a, b) = 1$.

Thus
$$\widehat{L}_{\varepsilon}(f) = \sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b))$$
 is odd.

Any crossing change will change the signed crossing number between two edges by ± 2 .

So for any embedding $\widehat{L}_{\varepsilon}(f)$ is odd.

Theorem

 K_7 is intrinsically chiral.

Proof: Suppose that K_7 has an achiral embedding f.

Then there is an orientation reversing homeomorphism $h: (S^3, f(K_7)) \to (S^3, f(K_7))$.

Let J denote the set of Hamiltonian cycles with nonzero arf invariant.

By Conway-Gordon, |J| is odd.

h permutes the elements of J, so the order of some orbit is an odd number n.

 \therefore h^n setwise fixes some Hamiltonian cycle with nonzero arf invariant.

Let $\overline{x_1x_2...x_7}$ be a Hamiltonian cycle preserved by h^n . This defines the oriented cycles $\overline{y_1y_2...y_7}$ and $\overline{z_1z_2...z_7}$.

Let $\overline{x_1x_2...x_7}$ be a Hamiltonian cycle preserved by h^n . This defines the oriented cycles $\overline{y_1y_2...y_7}$ and $\overline{z_1z_2...z_7}$.

Since $\overline{x_1x_2...x_7}$ is setwise invariant under h^n , the cycles $\overline{y_1y_2...y_7}$ and $\overline{z_1z_2...z_7}$ are also setwise invariant under h^n .

Thus h^n preserves all values of $\varepsilon(a, b)$.

Also, if h^n reverses the orientation of $\overline{x_1x_2...x_7}$, then h^n reverses the orientation of all edges.

Since h^n is orientation reversing, for each pair of edges a and b

$$\ell(h^n(f(a)),h^n(f(b)))=-\ell(f(a),f(b))$$

Since h^n preserves all values of $\varepsilon(a,b)$, this means

$$\widehat{L}_{\varepsilon}(h^n \circ f)) = -\sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b)) = -\widehat{L}_{\varepsilon}(f)$$

Since h^n is orientation reversing, for each pair of edges a and b

$$\ell(h^n(f(a)),h^n(f(b))) = -\ell(f(a),f(b))$$

Since h^n preserves all values of $\varepsilon(a,b)$, this means

$$\widehat{L}_{\varepsilon}(h^n \circ f)) = -\sum_{a \cap b = \emptyset} \varepsilon(a, b) \ell(f(a), f(b)) = -\widehat{L}_{\varepsilon}(f)$$

But since $h^n(f(K_7)) = f(K_7)$, we also have

$$\widehat{L}_{\varepsilon}(h^n \circ f)) = \widehat{L}_{\varepsilon}(f)$$

Thus $\widehat{L}_{\varepsilon}(f) = -\widehat{L}_{\varepsilon}(f)$. $\Longrightarrow \Leftarrow \text{since } \widehat{L}_{\varepsilon}(f)$ is odd.

Therefore K_7 is intrinsically chiral.

Other Examples

We use generalized Simon invariants to prove Möbius ladders M_{2N+1} with N>1 and Heawood graph C_{14} are intrinsically chiral.

- Every homeomorphism of $(S^3, f(M_{2N+1}))$ with N > 1 leaves the cycle $\overline{x_1 \dots x_{4N+2}}$ setwise invariant [Simon].
- Every homeomorphism of $(S^3, f(C_{14}))$ leaves either a 14-cycle or a 12-cycle setwise invariant [Nikkuni].

Minimal Crossing Number

Generalized Simon invariants can be used to show that a particular projection of a spatial graph has minimal crossing number.

Minimal Crossing Number

Generalized Simon invariants can be used to show that a particular projection of a spatial graph has minimal crossing number.

Theorem

Let f be an embedding of an oriented graph G in S^3 with generalized Simon invariant $\widehat{\mathcal{L}}_{\varepsilon}(f)$, and let c(f) be the minimal crossing number of f. For a given projection of f(G), let $m_{\varepsilon}(f)$ be the maximum of $|\varepsilon(e_i,e_j)|$ over all disjoint edges with $\ell(f(e_i),f(e_i))\neq 0$. Then

$$c(f) \geq \frac{|\widehat{\mathcal{L}}_{arepsilon}(f)|}{m_{arepsilon}(f)}$$

Minimal Crossing Number

Proof:

$$\begin{aligned} |\widehat{\mathcal{L}}_{\varepsilon}(f)| &= \left| \sum_{e_i \cap e_j = \emptyset} \varepsilon(e_i, e_j) \ell(f(e_i), f(e_j)) \right| \\ &\leq \sum_{e_i \cap e_j = \emptyset} |\varepsilon(e_i, e_j)| |\ell(f(e_i), f(e_j))| \\ &\leq m_{\varepsilon}(f) \sum_{e_i \cap e_j = \emptyset} |\ell(f(e_i), f(e_j))| \\ &\leq m_{\varepsilon}(f) c(f) \end{aligned}$$

Thus

$$c(f) \geq \frac{|\widehat{\mathcal{L}}_{\varepsilon}(f)|}{m_{\varepsilon}(f)}$$

$$\varepsilon(z_i, z_j) = 1$$
, $\varepsilon(x_i, y_j) = -1$, $\varepsilon(y_i, z_j) = 0$

$$\varepsilon(x_i, x_j) = \begin{cases} 3 & \text{if } x_i \text{ and } x_j \text{ are anti-parallel} \\ 2 & \text{if } x_i \text{ and } x_j \text{ are neither parallel nor anti-parallel} \end{cases}$$

$$\varepsilon(y_i, y_j) = \begin{cases} 0 & \text{if } y_i \text{ and } y_j \text{ are anti-parallel} \\ -1 & \text{if } y_i \text{ and } y_j \text{ are neither parallel nor anti-parallel} \end{cases}$$

$$\varepsilon(x_i, z_j) = \begin{cases} -1 & \text{if } x_i \text{ and } z_j \text{ are anti-parallel} \\ 1 & \text{if } x_i \text{ and } z_j \text{ are parallel} \end{cases}$$

An embedding of K_6

 $m_{\varepsilon}(f)$ is maximum of $|\varepsilon(e_i,e_j)|$ over all disjoint edges with $\ell(f(e_i),f(e_j))\neq 0$. So $m_{\varepsilon}(f)=1$.

An embedding of K_6

 $m_{\varepsilon}(f)$ is maximum of $|\varepsilon(e_i,e_j)|$ over all disjoint edges with $\ell(f(e_i),f(e_j))\neq 0$. So $m_{\varepsilon}(f)=1$.

$$\tilde{\mathcal{L}}_{\varepsilon}(f) = \varepsilon(y_3, y_6) \cdot 1 + \varepsilon(x_4, z_2) \cdot 1 + \varepsilon(y_1, y_4) \cdot 3 = -1 - 1 - 3 = -5$$

An embedding of K_6

 $m_{\varepsilon}(f)$ is maximum of $|\varepsilon(e_i,e_j)|$ over all disjoint edges with $\ell(f(e_i),f(e_j))\neq 0$. So $m_{\varepsilon}(f)=1$.

$$\tilde{\mathcal{L}}_{\varepsilon}(f) = \varepsilon(y_3, y_6) \cdot 1 + \varepsilon(x_4, z_2) \cdot 1 + \varepsilon(y_1, y_4) \cdot 3 = -1 - 1 - 3 = -5$$

By the theorem,

$$c(f) \ge \frac{|\widehat{\mathcal{L}}_{\varepsilon}(f)|}{m_{\varepsilon}(f)} = 5$$

Thus this projection has minimal crossing number.

Thanks

Thanks for listening and for coming to our conference.

See you in Tokyo in August.